
Serverless Postgres

Shaving off bytes at any scale
Matthias van de Meent

Space savings in various subsystems of PostgreSQL

Matthias van de Meent

● Frontend Dev -> Full-stack ('17) -> Infra/DBA ('18) ->

PG hacker ('20)

● Employed full-time on PG-related job since 2021

Overview

1: Catalogs

2: Table storage

3: WAL

4: TOAST

1: Catalogs

> pg_node_tree

> pg_attribute, pg_type information duplication

> aggressive toast_tuple_target

● Serialized nodes: Storage & debugging

● Extremely verbose

● Not even a very useful output format:

→ Based on our own misinterpretation of Lisp
syntax

→ Quite difficult to parse, process

1: Catalogs > pg_node_tree
Used any time we need to store expressions

● Replace storage with binary format (WIP)

→ Create improved node read/write
infrastructure

→ Add binary read-write format, omit default
values.

Initial tests show a 50+% reduction in storage

● Using said infrastructure, create a JSON writer
for Node*/pg_node_tree (future)

→ Improved debugging experience of catalog
data

1: Catalogs > pg_node_tree
Used any time we need to store expressions

● (HEAD) min size of 104 bytes, each

● Name

→ NAMEDATALEN bytes, = 64B
● Duplicated data from pg_type

→ attlen, attbyval, attalign
● Boolean flag bytes x5

→ single flags field?

1: Catalogs > pg_attribute
Stores attributes (duh!) of relations

1: Catalogs > aggressive
toast_tuple_target
How many TOAST table accesses do we
want in our catalog?

2: Table storage

> Visibility information

> Physical column order

> Columnar, compression

> Index data

● 18 bytes (+ 15 infomask bits) on visibility info:

→ t_xmin/t_xmax/t_cid/t_ctid
→ Kind of wasteful for all-visible frozen tuples

● Put all that visibility info in a separate fork, e.g.

→ specialized btree ordered by ctid
→ drop visibility info for frozen tuples
→ efficient VACUUM scans

●

2: Table storage > Visibility information
Every live tuple must be updatable

● Alignment padding can be expensive

● Reorder columns in table creation, new column
creation
→ Logical vs physical order

● ALTER TABLE ... ADD COLUMN support?
→ use HEAP_NATTS as layout version

2: Table storage > Physical column order
/* Column Tetris */ CREATE TABLE (
 c1 bool, c2 bigint, ...
);

● Some data can be very compressible

→ Time series data, orderlines, ...
● Various compression schemes make sense

→ Even MySQL has (optional) page-level
compression.

● Also applies to indexes (or, especially to indexes)

2: Table storage > Columnar, compression
Some data is more equal than other data

● Data in indexes is often co-located with similar

data

→ btree, gist, ...
● BTree prefix compression

● BRIN range bound suffix truncation

2: Table storage > Index size

3: WAL

> Record overhead

> Compression scope

3: WAL > Record overhead
Empty WAL record

● xl_tot_len: 4 B

● xl_xid: 4 B

● xl_prev: 8 B

● xl_info: 1 B

● xl_rmid: 1 B

● <padding: 2 B>

● xl_crc: 4 B

3: WAL > Record overhead
Empty WAL record: 24 bytes

● xl_prev, xl_info, xl_rmid, xl_crc: 14 B

→ No comments
● xl_tot_len: 4 B

→ value essentially always < 216

● xl_xid: 4 B

→ but no index AM uses this, so...
→ No comments

● <padding: 2 B>

→ Huh?

3: WAL > Record overhead
Empty WAL record: 24 bytes

3: WAL > Record overhead
Empty WAL record: 24 bytes
Modify a single data page?

● WAL record header (24 B)

● blkid (1B)

● fork+flags (1B)

● length (2B)

● RelFileLocator (12 B)

● BlockNo (4B)

3: WAL > Record overhead
Empty WAL record: 24 bytes
Modify a single data page? 44 bytes

● blkid (1B), fork+flags (1B)

● length (2B)

→ regularly 0/empty
● RelFileLocator (12 B)

→ 3x OID, can be anything
→ ... but often small

● BlockNo (4B)

→ varint coding for smaller tables?

3: WAL > Record overhead
Empty WAL record: 24 bytes
Modify a single data page? 44 bytes

● Records with multiple FPIs

→ e.g. GIN bulk creation
● Compress full WAL record data

→ smaller total WAL, but higher CPU
overhead...

3: WAL > Compression scope
FPIs are not the only compressible data in
WAL records

4: TOAST

> Compression

> Updates

● Compression dictionaries

→ Analysis of existing dataset, or hand-crafted
dictionaries.

→ Can't be dropped without full table scan, or
versioning horizon approach

● Datatype-aware compression

→ int[] -> differential encoding; etc.
→ CREATE TYPE hooks...

4: TOAST > Compression
From intra-value to inter-value

● WAL volume is huge

OID churn is huge

TOAST table bloat is huge

● ... why not have a specific API for bytea 'append'

operations? Or jsonb 'update' operations? Or ...

4: TOAST > Updates
UPDATE tab SET col_200MB_bytea =
col_200MB_bytea || '\x00'::bytea;

Thank you!
@mmeent_pg

